
Software development
in distributed
environments



Index

Chapter 1. Software development model

Chapter 2. Challenges

Chapter 3. Remedy

Chapter 4. Conclusions

OPENSHPERE - Developing large projects in distributed environments is never a simple task. Being 
dependent from other teams makes it hard or sometimes even impossible to develop and test parts 
of the project under one’s responsibility. Opensphere can simulate system components which aren’t 
available yet, allowing to progress with development on schedule and independently from other teams. 
The built-in testing framework enables executing regular regression test runs making sure the product is 
thoroughly tested before the delivery.

© centeractive ag, switzerland, www.centeractive.com

www.opensphere.centeractive.com DISTRIBUTED DEVELOPMENT 2



Chapter 1. 
Software development model

What can you say about a completely non-IT related company which hires two or three software de-
velopers to create a small piece of software for their very own use? And after that they keep coming 
up with ridiculous requirements just to keep themselves busy? To be politically correct, and not to use 
strong language, you could call that company mismanaged. Fortunately days when such companies 
existed are long gone, as managers’ positions these days are occupied by more qualified persons who 
outsource IT projects to companies specializing in software development.

Software development has never been simple. At the very beginning it was the technology that made 
coding difficult. As time went by technology improved greatly, however software development didn’t get 
any easier. It still requires a great deal of programming skills, knowledge of specific language patterns 
and much experience to produce quality software. 

Completing a given project in a limited time requires a certain amount of manpower. The quantity of 
these resources is determined by the size of the project and agreed deadlines. Larger projects require 
tens or even hundreds of specialists split into teams which are given different responsibilities. Very 
often tasks of developing certain components are outsourced to external companies which have the 
expertise in given areas.

It’s obvious that working on a large project in distributed environments is considerably different from 
developing a simple application by a group of three.

www.opensphere.centeractive.com DISTRIBUTED DEVELOPMENT 3



Chapter 2. 
Challenges
Developing different system components in parallel allows the completion of the entire project within 
the time schedule, which would have been unrealistic for a single development team implementing one 
system component after another. This isn’t the only case where the product is developed in a distributed 
environment. Given the variety of programing languages and available technologies, it might be that the 
company doesn’t have enough expertise to develop the entire system and has to outsource development 
of some subsystems to another company.

We’ve already established that a system comprises a number of components which communicate with 
each other. Each component requires some input data which is send back after being processed. This 
data exchange plays a bigger or smaller role depending on the particular case. Now the question is: 
how to design, develop and test a component which has to interact with other components that aren’t 
available yet?

Availability of components doesn’t always help either as they not only have to be available but acces-
sible as well. And one doesn’t really imply the other. Some companies have their production systems 
running 24/7 and they cannot afford to grant access to that system to a contractor company which 
has to develop and integrate another component. It’s very rare that a company has a testbed system 
which they can share with a third party contractor. Making more or less an exact copy of the production 
system only for development purposes would then be out of the question as it would be economically 
unreasonable.

Either way unavailability of other crucial system components poses a problem more often than you’d 
think.

www.opensphere.centeractive.com DISTRIBUTED DEVELOPMENT 4



Chapter 3. 
Remedy

How to develop and more importantly test software components when the system components aren’t 
ready yet or the production system isn’t accessible.

Every system should be well documented, from requirements specification to user manual and inter-
face documentation. The last one is especially important as it contains detailed information on how the 
component interacts with the rest of the system. These details include communication protocol specif-
ics as well as messages which are exchanged between system components. With such knowledge we 
can try and simulate given components in our development environment. Implementing objects just to 
simulate a certain behavior can be time consuming, but there are frameworks which allow simulation 
of any component with just a few clicks.

One of solutions which implements such features is centeractive’s Opensphere. It can simulate vari-
ous objects allowing independent progress with implementation and verification of contracted system 
components. The specifics of the simulated application are determined by the protocol which is used 
by this application to communicate. As we are discussing IT industry solutions, supported protocols 
include JMS, SOAP over HTTP, TIBCO Rendezvous® and JDBC. Pretty much the only input data which is 
required to simulate an object is a file containing supported messages in a given communication proto-
col. Opensphere provides additional means to assist the user as much as possible. A built-in message 
detector allows the identification of certain messages which can later be edited in the internal mes-
sages editor and used as a source message template in a simulated component. 

Implementation isn’t complete before the application has been thoroughly tested. While on the unit 
testing level developers can use mock objects to simulate other components, it’s not that simple in 
the case of system verification. Verification related tasks start in parallel with implementation. These 
include preparing test case scenarios, planning out test suites and regression test runs.

Opensphere can help with that as it contains a complete testing framework. It enables you to create and 
easily maintain test cases grouped in test suites, supervise test execution, and review and publish the 
test run results. All that wrapped up in a very intuitive and convenient user interface.

www.opensphere.centeractive.com DISTRIBUTED DEVELOPMENT 5



Chapter 4. 
Conclusions

In the IT industry time matters and it matters a lot. Depending on the contractual agreement not me-
eting deadlines can have pretty bad consequences. Trying to make excuses about the unavailability of 
certain components can be sometimes taken as unprofessional or even worse.

Fortunately there is Opensphere which can simulate non-existing components. As it supports major 
industry standard communication protocol, it provides a perfect remedy to problems that are very com-
mon in software development industry.

www.opensphere.centeractive.com DISTRIBUTED DEVELOPMENT 6


